Fiberfrax® Purefrax®
Hot Gas Filters

Description
Purefrax® filter elements are vacuum formed using Unifrax’s refractory ceramic fibers (Fiberfrax®) made into a slurry, together with organic and inorganic binders. The unique binding system means that low levels of organic binder are present so that the Purefrax filters retain strength and integrity when exposed to heat. The manufacturing process ensures that the outer surface of the filter is denser to promote cake filtration. The filters are a rigid tube, having one end closed and one end used as the clamping flange.

The Purefrax elements are fully machined on all exterior faces, to ensure dimensional accuracy and narrow tolerance windows. The machining process also ensures a uniform wall throughout the filter to allow uniformity of dust deposition, excellent cleaning characteristics and controlled porosity.

Our elements are manufactured to be tapered down the length of the piece (both ID and OD equally) which promotes easier installation into application, aerodynamic flow between elements and easier cake cleaning.

High temperature filtration of gases using filter elements made of high temperature wool (HTW) can offer significant key economic and environmental benefits when compared to other types of industrial air pollution control technologies.

Dimensions
Purefrax Elements can be formed to any length and diameter required. As they are machined to shape, the existing product range shown below can be tailored to suit individual needs. High levels of control are in place to ensure dimensional accuracy on all key dimensions.

<table>
<thead>
<tr>
<th>Description</th>
<th>Area (m²)</th>
<th>L – Length (mm)</th>
<th>C – Flange Dia (mm)</th>
<th>H – Flange Height (mm)</th>
<th>D1 – Inner Diameter (mm)*</th>
<th>D2 – Outer Diameter (mm)*</th>
<th>S – Wall Th (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>150 x 1350</td>
<td>0.55</td>
<td>1350</td>
<td>165</td>
<td>65</td>
<td>110</td>
<td>150</td>
<td>20</td>
</tr>
<tr>
<td>150 x 1500</td>
<td>0.62</td>
<td>1500</td>
<td>160</td>
<td>65</td>
<td>110</td>
<td>150</td>
<td>20</td>
</tr>
<tr>
<td>150 x 1600</td>
<td>0.70</td>
<td>1600</td>
<td>160</td>
<td>65</td>
<td>110</td>
<td>150</td>
<td>20</td>
</tr>
<tr>
<td>150 x 1800</td>
<td>0.80</td>
<td>1800</td>
<td>160</td>
<td>65</td>
<td>110</td>
<td>150</td>
<td>20</td>
</tr>
<tr>
<td>150 x 2000</td>
<td>0.90</td>
<td>2000</td>
<td>160</td>
<td>65</td>
<td>110</td>
<td>150</td>
<td>20</td>
</tr>
<tr>
<td>150 x 2200</td>
<td>1.00</td>
<td>2200</td>
<td>160</td>
<td>65</td>
<td>110</td>
<td>150</td>
<td>20</td>
</tr>
</tbody>
</table>

*Note: All of our Purefrax Elements are manufactured with an internal and external diameter taper down the length of the piece. The taper is consistent 5mm per 1000mm. Purefrax Elements are fully machined on the outside so outer diameters can be altered to suit specific customer requirements.

Specific drawings for each of our Purefrax Elements are available on request, with full tolerances listed.
Efficiency

The Filtration efficiency was determined using the BS3928 Sodium Flame Test, which challenges the media with an aerosol of NaCl particles with a mass medium size of 0.6 micron.

The table below shows our results gained from an independent laboratory, based on 12 tests of unused filter media at 3 different face velocities.

<table>
<thead>
<tr>
<th>Tests</th>
<th>Efficiency at 2cm/s (%) – 1.2m/min</th>
<th>Efficiency at 3cm/s (%) – 1.8m/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>97.37</td>
<td>96.332</td>
</tr>
<tr>
<td>2</td>
<td>96.585</td>
<td>95.095</td>
</tr>
<tr>
<td>3</td>
<td>96.875</td>
<td>95.353</td>
</tr>
<tr>
<td>4</td>
<td>95.37</td>
<td>93.231</td>
</tr>
<tr>
<td>5</td>
<td>97.522</td>
<td>95.633</td>
</tr>
<tr>
<td>6</td>
<td>96.71</td>
<td>94.573</td>
</tr>
<tr>
<td>7</td>
<td>96.123</td>
<td>94.489</td>
</tr>
<tr>
<td>8</td>
<td>96.412</td>
<td>94.153</td>
</tr>
<tr>
<td>9</td>
<td>98.094</td>
<td>96.771</td>
</tr>
<tr>
<td>10</td>
<td>96.796</td>
<td>95.353</td>
</tr>
<tr>
<td>11</td>
<td>97.985</td>
<td>96.893</td>
</tr>
<tr>
<td>12</td>
<td>96.817</td>
<td>94.927</td>
</tr>
<tr>
<td>Average</td>
<td>96.887</td>
<td>95.234</td>
</tr>
</tbody>
</table>
Fiberfrax Purefrax
Hot Gas Filters

Typical Chemical Analysis

<table>
<thead>
<tr>
<th>Fiberfrax</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Al₂O₃</td>
<td>30%</td>
</tr>
<tr>
<td>SiO₂</td>
<td>70%</td>
</tr>
<tr>
<td>CaO</td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td></td>
</tr>
</tbody>
</table>

Physical Properties

Colour
White/Cream

Density Range
350 Kgs/m³-400 Kgs/m³ typical

Porosity
>80%

Virgin Element Pressure Drop
10mm Wall Thickness = 20-25mm Water Gauge
20mm Wall Thickness = 30-35mm Water Gauge
Measured @ 3.0 cm/s face velocity, ambient temp.

Maximum Temp
900°C continuous application

Filtration Velocity
Up to 3m/min (application dependent). Typical application 1m/min

Typical Particulate
<1 mg/m³ in filtered gas

Emission

Element Length
Up to 3000mm

Element Outer Diameter
As elements are machined on OD this can be altered to customer requirements

Gaskets

T Flange
Manufactured from the same fiber chemistry as the Purefrax filters but using a latex binding system to allow flexibility and good sealing characteristics, gaskets are available as pre-cut shapes up to 20mm thick and supplied alongside the elements to be fitted at installation. Standard is usually 10mm thick paper, compressed 50% in application.

Conical Flange
Manufactured from the same fiber chemistry as the Purefrax filters, the gaskets are supplied in either blanket or felt material ranging from 6mm-25mm thickness. The gasket is attached to the flange using a high temperature glue for easier installation. Standard material is usually 13mm thickness x 128Kgs/m3 density.
Fiberfrax Purefrax
Hot Gas Filters

General Properties/Benefits

• Self-supporting
• Temperature resistant up to 1260°C*
• Insensitive to sparks and non-flammable
• Removes the fire risk from using conventional filter media at high temperatures
• Outstanding temperature fluctuation resistance
• High efficiency of filters not just limited to high temperatures
• High temperature filtration can prevent de-novo synthesis of Dioxins/Furans and increase efficiency of sorbents
• Final filter systems do not require cyclones, dilution air, spark arrestment or other ancillary abatement equipment – enabling lower power consumption and simpler operation
• Usable in corrosive atmospheres
• High porosity and air permeability
• Successful utilization with sorbent injection to control full range of emissions
• Reduction of emissions by almost 100%
• Minimal pressure drop
• Consistent wall thickness for more even filtration
• Long established manufacturer of hot gas filters
• 100s of applications worldwide.

*Shrinkage will occur and alter product characteristics

Typical Applications

• Dedusting of melting furnaces and fluidized bed processes
• Power station: gasification of coal, gasification of waste
• Gasification of biomass e.g. wood, sewage sludge etc.
• Cement industry
• Glass industry
• Waste incineration plants
• Chemical manufacture
• Catalyst/Precious Metals Recovery